Photodegradable hydrogels for external manipulation of cellular microenvironments with real-time monitoring

نویسندگان

  • Hanxu Ji
  • Kai Xi
  • Qiuhong Zhang
  • Xudong Jia
چکیده

With the rapid progress of tissue engineering and regenerative medicine, the cell-friendly construction of a 3D extracellular matrix in a precisely controlled manner is needed. This biomimicry of the native extracellular matrix replicates major aspects of the native cellular microenvironment. Herein, we design a polyethylene glycol (PEG) based hydrogel combined with caging chemistry, which could achieve lighttriggered local control of the hydrogel. The crosslinking density of the hydrogel could be tuned with UV exposure by decomposing the structure of the hydrogel. Meanwhile, by introduction of the releasable Rhodamine 110 molecule, we could conveniently monitor the change of the crosslinking density of the hydrogels via fluorescence. By this approach, adjustable user-defined stiffness patterns with different fluorescence intensity in a range of soft tissue microenvironments have been obtained. This novel hydrogel design could be useful for the manipulation of cell fate in various other contexts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photodegradable hydrogels for dynamic tuning of physical and chemical properties.

We report a strategy to create photodegradable poly(ethylene glycol)-based hydrogels through rapid polymerization of cytocompatible macromers for remote manipulation of gel properties in situ. Postgelation control of the gel properties was demonstrated to introduce temporal changes, creation of arbitrarily shaped features, and on-demand pendant functionality release. Channels photodegraded with...

متن کامل

Optical Cell Picking in Photodegradable Hydrogels Based on Cellular Morphology in 3d Culture Environment

We present a new methodology for optical cell picking in 3D culture environment, because biological cells often show phenotype alterations by the interactions with pericellular matrix in 3D culture. In this study, we encapsulated cells in photodegradable hydrogels by mixing cell-containing gelatin solution with crosslinker, NHS-PC-4armPEG. The minimum resolution of photodegradation was estimate...

متن کامل

Click-crosslinkable and photodegradable gelatin hydrogels for cytocompatible optical cell manipulation in natural environment

This paper describes the generation of "click-crosslinkable" and "photodegaradable" gelatin hydrogels from the reaction between dibenzocycloctyl-terminated photoclevable tetra-arm polyethylene glycol and azide-modified gelatin. The hydrogels were formed in 30 min through the click-crosslinking reaction. The micropatterned features in the hydrogels were created by micropatterned light irradiatio...

متن کامل

Fabrication of Biomimetic 3d Liver Tissue Using Photodegradable Hydrogels and Perfusion Culture in a Microfluidic Device

This paper reports a novel technique to fabricate perfusable 3D liver tissue in a microfluidic device using photodegradable hydrogels prepared with gelatin. Also, we performed the perfusion culture of human hepatocellular carcinoma (HepG2) cells encapsulated in the patterned hydrogels.

متن کامل

Mechanical Properties and Degradation of Chain and Step-Polymerized Photodegradable Hydrogels

The relationship between polymeric hydrogel microstructure and macroscopic properties is of specific interest to the materials science and polymer science communities for the rational design of materials for targeted applications. Specifically, research has focused on elucidating the role of network formation and connectivity on mechanical integrity and degradation behavior. Here, we compared t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017